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Abstract

We describe an elementary proof that a manifold with the topology of the
Politzer time machine does not admit a nonsingular, asymptotically flat
Lorentz metric.
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in a recent paper Chamblin, Gibbons and Steifl [1] have used the idea
of gravitational kinks [2 3] to prove that in even spacctime dimensions there
does not exist a nonsingular, asymptotically flat T.orentz metric on the smooth
Politzer time machine. The 7L-dimensional Politzer time machine is obtained
try (i) starting from the Minkowski spacetime R” with the flat metric, (i) by
cutting out and duplicating the two closed unit (n - 1) balls centered a the
origin in each of thespacelike hypersurfaces {t = O} and {t=- 1}, so that a pair’
of spherical “dits’ is created, one in each hypersurface, and (iii) by identifying
the upper cdge of the first dit withthe lower edge of the second, and thelower
edge of thefirst dit with the upper edge of the sccond. The resulting topological
space is not a manifold, as the troundary points of the two dits (the points that
lie on the boundary spheres of the two unit (n - 1)- balls) do not have locally
Euclidean open necighborhoods. However, these singularities can be trivially
smoothed-out to obtain a manifold with the same global topology as the original
space; wc will call this manifold ‘(smooth Politzerspace” fOr emphasis. It has
the topology of a - dimensional “handle”) i.e. $("~ ) x S! with a point (which
corresponds to infinity) removed. (A more drastic way to otrtain a smooth
manifold is to simply remove the troublesome troundary points of the two dlits;
together with the flat metric on the original space, this yields a well-defined
spacetime with singularities where the boundary points are removed. It is this
space that is usually referred to as the “Politzer spacetime” in the literature. )
The question addressed by [1], and aso by the present note, is whether a smooth
Lorentz metric, which has the same qualitative behavior as the flat metric on the
original Politzer space, exists on the smooth Politzer manifold. Inparticular,
such a metric needs to be asymptotically flat at the asymptotically Fuclidean
“end” (the point at “infinity” removed from S~ 1D« S')of the Politzer handle.
(For more detailed background information we refer to [I].)

This question has been answered negatively in[1] try Chamblin, Gibbons
and Steif. The techniques used by these authors, based on the genera notion
of gravitational kinks [2- 3], have wide scope and great power in dealing with
questions of this kind. However, for the present specific question about the
smooth Politzer space, there exists asimpler proof of the negative answer that
Uses only el ementary diflerential topology:; we will now present this proof. Qur
argument is based on a single well-known result: the Poincare-Hopf theorem [4],
which states that for a compact, orientable manifold M and a smooth vector
ficld X on M with only isolated zeros, the Fuler number x(M) is equa to the
sum over the zeros of X of the indices of X at those zeros. One immediate
corollary of this result is that if x(M)# O, a compact, oriecntable M docs not




admit an everywherenonzero vector field, arid hence dots not admit a smooth

TLorentz metric. Another corollary is the formula for the Euler number of a
connected sum: If My and M2 arc compact, orientable even (2m- )dimensional
manifolds, then x{(Mi# Mz)=x(M1)-1 x(Ms2)- 2. To derive this from the
Poincare-Hop f, consider vector fields X| and X2 with isolated zeros on M, and
My, respectively, so that X; has a simple zero at p; € M;. Since the antipodal
map on the odd-sphere S(2™-1)ishomotopic to identity ([4]), wc can, without
changing the indices at the zeros, flip the signs of the X if necessary and arrange
that X; is inward-pointing near P1 and X2 is outward-pointing neat p2. Now
wc perform the connected sum try joining M; and M2 in a neighborhood of
i€ M;. Then wc can smoothly extend the vector ficlds X: tO a vector field
X on MI #/M,such that X has precisely the same set of zeros and indices as
the X; except for the simple zeros at pyand p2: X is smooth and nonzero near

p1 £ P2 by construction. The forr nula now follows by simple counting.

Now assumec that the smooth Politzer space Sx S" D\ p. admits a
smooth T.orentz metric which is asymptoptically flat near po..l.ct 7'” denote
the n-torus with the standard flat T.orentz metric on it. Since the I.oreniz
metric on the Politzer manifold is asymptotically flat al poe, wC can combine
the two metrics smoothly to obtainaT.orentz metric on the connected sum
(S'x S~ D) 7™ But the Ruler number of $'x §("~1) and of 7™ arc troth zero.
If the dimension = is even, by the formula above x[(S'x S~ M#717] = -2,
accordingly, it is impossibe for (S'x S™~1)#7™ to admit a smooth T.orentz.
metric. This contradiction proves the result we seek in even dimensions n.

More generally, let us call a n-manifold M “asymptotically Fuclidean”
if compact subsets K C M and B CR™ exist such that M\K is diffcomorphic
to R™\B.Call aLorentz metric on M asymptotically flat if on M\K it is
asymptotic to the Mi nkowski met ric. ¥or an asymptotically Euclidean M, let
M denote the one-point compactification of M obtainedby smoothly adjoining
to M the point at infinity of M\K. Thus, if M is R®, then M> is S'; for the
smooth Politzer space M™ is §' x §("~ 1. The argument above proves the

following result:

T.et M be an orientable, even-dirncnsional asymptotically Euclidean manifold.
If x(M>}# 2, then M does not admit a smooth, asymptotically flat T.orentz

metric.
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